A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats.

نویسندگان

  • Markus Siegel
  • Peter König
چکیده

During the past decade, numerous studies have demonstrated stimulus-specific synchronization of neuronal activity in the gamma-frequency range. However, it appears that the different analyses are based on widely different assumptions about which frequency range to investigate. Therefore, the term "gamma-synchronization" refers to an inhomogeneous spectrum of definitions and corresponding frequency bands. Moreover, most studies have been performed in anesthetized animals or in awake animals by use of fixation paradigms. Thus, it is difficult to relate these results to alert animals behaving under natural conditions. Here, we investigate stimulus specific synchronization in primary visual cortex of awake cats in a tracking paradigm. We record local field potentials and multiunit activity simultaneously from multiple electrodes. (1) We demonstrate that visual stimulation induces neuronal synchronization in a broad frequency range reaching well above 100 Hz. (2) We derive a functional gamma-band based on an objective criterion: We show that synchronization of neuronal activity is optimally orientation-tuned when a broad frequency band is considered. This band starts above 40 Hz, a frequency that is typically related to the term gamma-synchronization, and extends to very high frequencies. Interestingly, the frequency of maximum synchronization is different from the frequency at which synchronization is most stimulus specific. (3) We demonstrate synchronization of neuronal activity in a distinct low-frequency band with different properties suggesting separate functional roles of low- and high-frequency synchronization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulus repetition modulates gamma-band synchronization in primate visual cortex.

When a sensory stimulus repeats, neuronal firing rate and functional MRI blood oxygen level-dependent responses typically decline, yet perception and behavioral performance either stay constant or improve. An additional aspect of neuronal activity is neuronal synchronization, which can enhance the impact of neurons onto their postsynaptic targets independent of neuronal firing rates. We show th...

متن کامل

Top-Down Beta Enhances Bottom-Up Gamma

Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this po...

متن کامل

Top-down modulation of stimulus drive via beta-gamma cross-frequency interaction

SUMMARY Recently, several studies have demonstrated that visual stimulus routing is subserved by inter-areal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes might implement top-down control, if top-down and bottom-up mediating rhythms are coupled through cross-frequency interaction. To test this possibility, we investigate...

متن کامل

Trial-to-trial noise cancellation of cortical field potentials in awake macaques by autoregression model with exogenous input (ARX).

Gamma band synchronization has drawn increasing interest with respect to its potential role in neuronal encoding strategy and behavior in awake, behaving animals. However, contamination of these recordings by power line noise can confound the analysis and interpretation of cortical local field potential (LFP). Existing denoising methods are plagued by inadequate noise reduction, inaccuracies, a...

متن کامل

Retino‐cortical stimulus frequency‐dependent gamma coupling: evidence and functional implications of oscillatory potentials

Long-range gamma band EEG oscillations mediate information transmission between distant brain regions. Gamma band-based coupling may not be restricted to cortex-to-cortex communication but may include extracortical parts of the visual system. The retinogram and visual event-related evoked potentials exhibit time-locked, forward propagating oscillations that are candidates of gamma oscillatory c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2003